Author: Xu Zhang, Lei Zhang, Junjie Liu, Zongzuan Shen, Zhuxiu Liu, Haidong Gu, Xiaojing Hu, Zhenhua Yu, Yansheng Li, Jian Jin, Guanghua Wang
Citation: Zhang, Xu, et al. "Biofertilizers enhance soil fertility and crop yields through microbial community modulation." Agronomy 15.7 (2025): 1572.
Abstract:
https://www.mdpi.com/2073-4395/15/7/1572
Soil microorganisms play critical roles in mediating soil fertility. Exploring the effect of fertilization on soil microbial communities is of great importance to comprehend the sustainability of agriculture. However, the impacts of the application of different fertilization techniques on soil microbial communities remain ambiguous due to inconsistent findings across studies. In this study, we investigated changes in soil microbial communities under different fertilization techniques (chemical fertilizer (CK), organic fertilizer (OF), Bacillus-amended biofertilizer (BF), and Trichoderma-amended biofertilizer (MF)) and analyzed the link between soil fertility improvement and crop yield increase from a microbial perspective. Compared to the CK treatment, the BF and MF treatments increased corn yields by 16.07% and 12.98%, and soybean yields by 17.48% and 15.32%, respectively. BF tends to increase soil available phosphorus, whereas MF demonstrates a more pronounced enhancement in both available phosphorus and NH4+-N contents. These differential effects were primarily linked to changes in the microbial community. Specifically, BF significantly enriched Bacillus, Rhodanobacter, Massilia, Mortierella, and Tetracladium, while the MF selectively increased the abundances of Burkholderia-Caballeronia-Paraburkholderia, Trichoderma, Penicillium, and Sistotrema. Co-occurrence network analysis revealed that biofertilizers enhanced microbial network stability and complexity compared to conventional fertilization techniques. Moreover, structural equation modeling (SEM) confirmed strong and positive relationships between crop yields and the abundances of specific probiotic microorganisms. These findings elucidate the mechanism-specific roles of biofertilizers in agricultural systems and provide novel insights for developing targeted biofertilizer formulations to advance sustainable agricultural practices.
Author: Xu Zhang, Lei Zhang, Junjie Liu, Zongzuan Shen, Zhuxiu Liu, Haidong Gu, Xiaojing Hu, Zhenhua Yu, Yansheng Li, Jian Jin, Guanghua Wang
Citation: Zhang, Xu, et al. "Biofertilizers enhance soil fertility and crop yields through microbial community modulation." Agronomy 15.7 (2025): 1572.
Abstract:
https://www.mdpi.com/2073-4395/15/7/1572
Soil microorganisms play critical roles in mediating soil fertility. Exploring the effect of fertilization on soil microbial communities is of great importance to comprehend the sustainability of agriculture. However, the impacts of the application of different fertilization techniques on soil microbial communities remain ambiguous due to inconsistent findings across studies. In this study, we investigated changes in soil microbial communities under different fertilization techniques (chemical fertilizer (CK), organic fertilizer (OF), Bacillus-amended biofertilizer (BF), and Trichoderma-amended biofertilizer (MF)) and analyzed the link between soil fertility improvement and crop yield increase from a microbial perspective. Compared to the CK treatment, the BF and MF treatments increased corn yields by 16.07% and 12.98%, and soybean yields by 17.48% and 15.32%, respectively. BF tends to increase soil available phosphorus, whereas MF demonstrates a more pronounced enhancement in both available phosphorus and NH4+-N contents. These differential effects were primarily linked to changes in the microbial community. Specifically, BF significantly enriched Bacillus, Rhodanobacter, Massilia, Mortierella, and Tetracladium, while the MF selectively increased the abundances of Burkholderia-Caballeronia-Paraburkholderia, Trichoderma, Penicillium, and Sistotrema. Co-occurrence network analysis revealed that biofertilizers enhanced microbial network stability and complexity compared to conventional fertilization techniques. Moreover, structural equation modeling (SEM) confirmed strong and positive relationships between crop yields and the abundances of specific probiotic microorganisms. These findings elucidate the mechanism-specific roles of biofertilizers in agricultural systems and provide novel insights for developing targeted biofertilizer formulations to advance sustainable agricultural practices.