Author: Dilfuza Jabborova, Zafarjon Jabbarov, Tokhtasin Abdrakhmanov, Orzubek Fayzullaev, Baljeet Singh Saharan, Kahkashan Perveen, Syed Muhammad Zaka, Andrea Mastinu, Riyaz Sayyed
Citation: Jabborova, Dilfuza, et al. "Assessing the synergistic effects of biochar, hydrogel and biofertilizer on growth and physiological traits of wheat in saline environments." Functional Plant Biology 52.4 (2025).
Abstract:
https://connectsci.au/fp/article-abstract/52/4/FP24277/200362/Assessing-the-synergistic-effects-of-biochar?redirectedFrom=fulltext
Soil salinity affects plant growth and crop yield. This warrants the urgent need for sustainable management. Our research aims to assess the impact of hydrogel, biochar and biofertilizer on wheat physiology, yield, soil nutrients and enzymes. The study was carried out at the dry bed of the Aral Sea. The experimental design included hydrogel, biochar, biofertilizer (Yer malxami includes Azotobacter chroococcum, Pseudomonas putida and Bacillus subtilis) and control treatments. After 60 days of sowing, plant growth metrics, physiological qualities, root morphological features, soil nutrients and enzyme activities were measured. The findings revealed significant improvement in growth of wheat following biofertilizer, hydrogel and biochar treatments. Applying biofertilizer resulted in a notable increase in the total root length by 69.9%, root volume by 123.7% and root diameter by 84.6%, and the highest chlorophyll a (Chl a) by 13.3%, chlorophyll b by 13.7% (Chl b) and total chlorophyll content by 13.1% compared to other treatments. Biofertilizer treatment significantly enhanced plant nitrogen (N) content by 16.0%, phosphorus (P) content by 94.7% and potassium (K) content by 51.8%, and increased the activities of soil enzymes such as catalase and invertase. The implementation of these soil amendments can be posited to mitigate the deleterious effects of saline conditions on wheat and can improve wheat growth under salinity stress.
Author: Dilfuza Jabborova, Zafarjon Jabbarov, Tokhtasin Abdrakhmanov, Orzubek Fayzullaev, Baljeet Singh Saharan, Kahkashan Perveen, Syed Muhammad Zaka, Andrea Mastinu, Riyaz Sayyed
Citation: Jabborova, Dilfuza, et al. "Assessing the synergistic effects of biochar, hydrogel and biofertilizer on growth and physiological traits of wheat in saline environments." Functional Plant Biology 52.4 (2025).
Abstract:
https://connectsci.au/fp/article-abstract/52/4/FP24277/200362/Assessing-the-synergistic-effects-of-biochar?redirectedFrom=fulltext
Soil salinity affects plant growth and crop yield. This warrants the urgent need for sustainable management. Our research aims to assess the impact of hydrogel, biochar and biofertilizer on wheat physiology, yield, soil nutrients and enzymes. The study was carried out at the dry bed of the Aral Sea. The experimental design included hydrogel, biochar, biofertilizer (Yer malxami includes Azotobacter chroococcum, Pseudomonas putida and Bacillus subtilis) and control treatments. After 60 days of sowing, plant growth metrics, physiological qualities, root morphological features, soil nutrients and enzyme activities were measured. The findings revealed significant improvement in growth of wheat following biofertilizer, hydrogel and biochar treatments. Applying biofertilizer resulted in a notable increase in the total root length by 69.9%, root volume by 123.7% and root diameter by 84.6%, and the highest chlorophyll a (Chl a) by 13.3%, chlorophyll b by 13.7% (Chl b) and total chlorophyll content by 13.1% compared to other treatments. Biofertilizer treatment significantly enhanced plant nitrogen (N) content by 16.0%, phosphorus (P) content by 94.7% and potassium (K) content by 51.8%, and increased the activities of soil enzymes such as catalase and invertase. The implementation of these soil amendments can be posited to mitigate the deleterious effects of saline conditions on wheat and can improve wheat growth under salinity stress.