Biofertilizers Improve the Leaf Quality of Hydroponically Grown Baby Spinach (Spinacia oleracea L.)

Agronomy
2023.02.17

Author: Hayriye Yildiz Dasgan, Sevda Kacmaz, Bekir Bülent Arpaci, Boran İkiz and Nazim S. Gruda

Citation: Dasgan, Hayriye Yildiz, et al. "Biofertilizers Improve the Leaf Quality of Hydroponically Grown Baby Spinach (Spinacia oleracea L.)." Agronomy 13.2 (2023): 575.

Abstract:

https://www.mdpi.com/2073-4395/13/2/575

Plant nutrition through mineral fertilizers is commonly used in soilless culture systems. Our study aims to replace intensive mineral fertilizers with bio-fertilizers, at least partially. We supplemented 50% of the mineral fertilizers with Chlorella vulgaris microalgae, a mix of beneficial bacteria and mycorrhiza. In addition, we investigated how to enhance spinach quality by implementing a sustainable and eco-friendly production method. Our research focused on analyzing the parameters of leaf quality and nitrate accumulation of baby spinach grown in a floating culture system utilizing biofertilizers. When mycorrhiza, algae, and bacteria supplemented 50% of mineral fertilizers, 17.5%, 20%, and 21.9% fewer leaf yields than 100% mineral fertilizers (5270 g m−2) were achieved. However, biofertilizers improved the internal leaves’ quality of hydroponically grown baby spinach. The highest amount of total phenolic (356.88 mg gallic acid 100g−1), vitamin C (73.83 mg 100 g−1), total soluble solids (9.4%), phosphorus (0.68%), and iron (120.07 ppm) content were obtained by using mycorrhiza. Bacteria induced the lowest nitrate content (206 mg kg−1) in spinach leaves, while 100% mineral fertilizers showed the highest nitrate (623 mg kg−1) concentration. Moreover, bacteria provided the highest SPAD-chlorophyll (73.72) and titrable acidity (0.31%). The use of microalgae, Chlorella vulgaris, induced the highest amount of potassium (9.62%), calcium (1.64%), magnesium (0.58%), zinc (75.21 ppm), and manganese (64.33 mg kg−1). In conclusion, our findings demonstrate that the utilization of biofertilizers has the potential to significantly reduce the reliance on mineral fertilizers by up to 50%. Furthermore, an improvement in the quality of baby spinach, as evidenced by an increase in health-beneficial compounds, is possible. Thus, implementing biofertilizers in the cultivation of soilless baby spinach presents a promising approach to achieving both environmental sustainability and improved crop quality.